Fundamentals of NanoElectronics Lecture – II Review

SINGLE LEVEL TRANSPORT $(T \rightarrow 0)$

MULTIPLE STATES $(T \rightarrow 0)$

Current:
$$I = \frac{q\gamma}{2\hbar} \int dE D(E)$$

CURRENT MORE GENERAL FORM (T≠0)

Current:
$$I = \frac{q\gamma}{2\hbar} \int dE D(E) \left[f_1(E) - f_2(E) \right]$$

Gate Control (FET TRANSISTOR)

VOLTAGE DROP

VOLTAGE DROP

CURRENT SATURATION??

APPLIED BIAS

CURRENT SATURATION??

Fundamentals of NanoElectronics Lecture – III

Capacitor Network (Laplace Potential)

Laplace Potential

$$U_L = \frac{C_S}{C_E} \left(-qV_S\right) + \frac{C_G}{C_E} \left(-qV_G\right) + \frac{C_D}{C_E} \left(-qV_D\right)$$

where $C_E = C_S + C_G + C_D$

$$U_L = \frac{C_G}{C_E} \left(-qV_G\right) + \frac{C_D}{C_E} \left(-qV_D\right)$$

since $V_s = 0$

Charge Transfer & Charging Potential

$$-q\Delta N = C_{S}V + C_{G}(V - V_{G}) + C_{D}(V - V_{D})$$

where
$$-qV = U$$

 $U_L = \frac{C_G}{C_E} \left(-qV_G\right) + \frac{C_D}{C_E} \left(-qV_D\right)$

$$U = U_L + \frac{q^2}{C_E} \Delta N$$

$$U = U_L + \frac{q^2}{C_E} \Delta N$$

$$U = U_L + U_0 \left(N - N_0\right)$$

single electron charging energy

STRONG CHARGING REGIME (U₀ >> kT)

Coulomb Blockade Effect-I

Coulomb Blockade Effect-II

Coulomb Blockade Effect-III

TIME ARROW

Next Slide

Coulomb Blockade Effect-IV

TIME ARROW

Next Electron Please!!

Equilibrium

DRAIN

Applied Gate Voltage

WEAK CHARGING REGIME (U₀ << kT)

CONSTANT DENSITY OF STATES

Current

:
$$I = \frac{q\gamma}{2\hbar} \int dE \ D(E) \Big[f_1(E) - f_2(E) \Big] = \frac{q\gamma}{2\hbar} (qVD) \qquad D(E)$$

= const

Electron-Electron Interaction

electron-electron interaction

 $U = U_L + U_0 \left(N - N_0 \right)$

Gate Control

 $I = \frac{q\gamma}{2\hbar} \int dE \cdot D(E - U) \Big[f_1(E) - f_2(E) \Big]$

NUMBER OF ELECTRONS IN THE CHANNEL

Number of Electrons (Equilibrium)

Number of Electrons (Non-Equilibrium)

This is for non-equilibrium and here we assume escape rate γ is same for both sides.

Asymmetric Device

This is for non-equilibrium and here we assume escape rate γ is different for both sides ($\gamma_1 \& \gamma_2$)

ASSYMETRIC COUPLING & CURRENT

 $I = \frac{q}{h} \int dE \cdot D(E) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \Big[f_1(E) - f_2(E) \Big]$

 $i_1 = i_1^{in} - i_1^{out} = \frac{q\gamma_1}{\hbar} dE \cdot D(E) \cdot \left[f_1(E) - f_{channel}(E) \right]$

 $i_2 = i_2^{out} - i_2^{in} = \frac{q\gamma_2}{\hbar} dE \cdot D(E) \cdot \left[f_{channel}(E) - f_2(E) \right]$

Charge Conservation

$$i_1 = i_1^{in} - i_1^{out} = \frac{q\gamma_1}{\hbar} dE \cdot D(E) \cdot \left[f_1(E) - f_{channel}(E) \right]$$

$$i_2 = i_2^{out} - i_2^{in} = \frac{q\gamma_2}{\hbar} dE \cdot D(E) \cdot \left[f_{channel}(E) - f_2(E) \right]$$

Charge Conservation

$$\gamma_1 \cdot \left[f_1(E) - f_{channel}(E) \right] = \gamma_2 \cdot \left[f_{channel}(E) - f_2(E) \right]$$

$$f_{channel}(E) = \frac{\gamma_1 \cdot f_1(E) + \gamma_2 \cdot f_2(E)}{\gamma_1 + \gamma_2}$$

Channel Fermi Energy?

Weighted Average

$$f_{channel}(E) = \frac{\gamma_1 \cdot f_1(E) + \gamma_2 \cdot f_2(E)}{\gamma_1 + \gamma_2}$$

$$f_1(E) \equiv \frac{1}{1 + \exp[(E - \mu_1)/k_{\rm B}T]}$$

$$f_2(E) \equiv \frac{1}{1 + \exp[(E - \mu_2)/k_{\rm B}T]}$$

there is no $\mu_{channel}$

$$f_{channel}(E) \neq \frac{1}{1 + \exp\left[\left(E - \mu_{channel}\right)/k_B T\right]}$$

Charge Conservation

$$i_{i} = \frac{q\gamma_{1}}{\hbar} dE \cdot D(E) \cdot \left[f_{1}(E) - \frac{\gamma_{1} \cdot f_{1}(E) + \gamma_{2} \cdot f_{2}(E)}{\gamma_{1} + \gamma_{2}} \right]$$

$$i_{i} = \frac{q}{\hbar} dE \cdot D(E) \cdot \frac{\gamma_{1}\gamma_{2}}{\gamma_{1} + \gamma_{2}} \cdot \left[f_{1}(E) - f_{2}(E)\right]$$

 $I = \frac{q}{\hbar} \int dE \cdot D(E) \cdot \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \cdot \left[f_1(E) - f_2(E) \right]$

SELF CONSISTENT CURRENT CALCULATION

Charge Conservation

$$I = \frac{q}{\hbar} \int dE \cdot D(E - U) \frac{\gamma}{2} \Big[f_1(E) - f_2(E) \Big]$$

$$\gamma_1 = \gamma_2$$

$$U = U_L + U_0 \left(N - N_0 \right)$$

$$N = \int dE \cdot D(E - U) \Big[\frac{f_1(E) + f_2(E)}{2} \Big]$$

$$I = \frac{q}{\hbar} \int dE \cdot D(E - U) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \Big[f_1(E) - f_2(E) \Big]$$

$$U = U_L + U_0 \left(N - N_0 \right)$$

$$N = \int dE \cdot D(E - U) \Big[\frac{\gamma_1 f_1(E) + \gamma_2 f_2(E)}{\gamma_1 + \gamma_2} \Big]$$

CURRENT (
$$U_0 \rightarrow 0$$
)

$$I = \frac{q}{\hbar} \int dE \cdot D(E - U) \cdot \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \cdot \left[f_1(E) - f_2(E) \right] \qquad (I)$$

$$N = \int dE \cdot D(E - U) \cdot \left[\frac{\gamma_1 \cdot f_1(E) + \gamma_2 \cdot f_2(E)}{\gamma_1 + \gamma_2} \right]$$

$$U = U_L + U_0 \left(N - N_0 \right)$$

(II)

How to solve this?

If $U_0=0 \Rightarrow U=U_L$ then these two equations (II and III) are decoupled

CURRENT
$$(U_0 > 0)$$

$$I = \frac{q}{\hbar} \int dE \cdot D(E - U) \cdot \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \cdot \left[f_1(E) - f_2(E) \right] \qquad (I)$$

(II)

(III)

$$\mathbf{V} = \int dE \cdot D(E - U) \cdot \left[\frac{\gamma_1 \cdot f_1(E) + \gamma_2 \cdot f_2(E)}{\gamma_1 + \gamma_2} \right]$$

$$U = U_L + U_0 \left(N - N_0 \right)$$

How to solve this?

- i. Assume an U (by guess),
- ii. Find a N using equation (*II*)
- iii. Find a new U using equation (III)
- iv. Do step ii and iii until converge
- v. Using equation (/) calculate current

Self Consistent Solution

$$I = \frac{q}{\hbar} \int dE \cdot D(E - U) \cdot \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \cdot \left[f_1(E) - f_2(E) \right] \quad (I)$$

$$N = \int dE \cdot n(E) = \int dE \cdot D(E - U) \cdot \left[\frac{\gamma_1 \cdot f_1(E) + \gamma_2 \cdot f_2(E)}{\gamma_1 + \gamma_2} \right]$$
(II)

$$U = U_L + U_0 \left(N - N_0 \right) \quad (III)$$

How to solve?

Self Consistent Solution (critical condition fraction of kT)

CURRENT THROUGH A SINGLE LEVEL REVISITED!!!

CURRENT THROUGH SINGLE ENERGY LEVEL

Current:
$$I = \frac{q}{\hbar} \int dE \cdot D_{\varepsilon}(E) \cdot \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \cdot \left[f_1(E) - f_2(E) \right] = \frac{q^2}{h}$$

CURRENT THROUGH SINGLE ENERGY LEVEL

Current:
$$I = \frac{q}{\hbar} \int_{-\infty}^{+\infty} dE D_{\varepsilon}(E) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} [f_1(E) - f_2(E)]$$

At low temperature: $f_1(E) - f_2(E) = 1$ if $\mu_1 > E > \mu_2$ = 0 otherwise

$$I = \frac{q}{\hbar} \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \int_{\mu_2}^{\mu_1} dE D_{\varepsilon}(E) = \frac{q}{\hbar} \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} (\mu_1 - \mu_2) \frac{(\gamma_1 + \gamma_2)/2\pi}{(\mu - \varepsilon)^2 + (\gamma_1 + \gamma_2)^2}$$

 $\mu_1 - \mu_2 = qV_{\rm D}$

$$G \equiv \frac{I}{V_{\rm D}} = \frac{q^2}{h} \frac{4\gamma_1\gamma_2}{(\gamma_1 + \gamma_2)^2} = \frac{q^2}{h} \qquad \qquad \gamma_1 = \gamma_2$$