
Fundamentals	of	NanoElectronics	
Lecture	–	II	Review	



SINGLE	LEVEL	TRANSPORT	(Tà0)	

Applied 
Voltage 

Current: 

 
I = ΔQ

Δt
= qγ
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     Δt = 2!
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γ
!  

γ
!
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qΔV

MULTIPLE	STATES	(Tà0)	

Current : 
 
I = qγ

2!
dE  D E( )∫

 γ ! γ !



CURRENT	MORE	GENERAL	FORM	(T≠0)	

Current : 
 
I = qγ

2!
dE  D E( ) f1 E( )− f2 E( )⎡⎣ ⎤⎦∫

qΔV
dE



CG	controls	the	potenIal	of	the	gate.		
	
Large	dielectric	materials	ε~200	
	
No	more	SiOx	!!	

CG = εA
d

Gate	Control	(FET	TRANSISTOR)	

Channel	



VOLTAGE	DROP	

q ΔV 2( )
q ΔV 2( )



VOLTAGE	DROP	

q ΔV 2( )

q ΔV 2( )



CURRENT	SATURATION??	

How	is	that	possible?	
	
SaturaIon	is	ideal	for	circuit	design		

What is the channel potential? 



APPLIED	BIAS	

qΔV



CURRENT	SATURATION??	

How	is	that	possible?	
	
SaturaIon	is	ideal	for	circuit	design		

What is the channel potential? 
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Capacitor	Network	(Laplace	PotenIal)	

since	 VS = 0UL =
CG

CE

−qVG( ) + CD

CE

−qVD( )

Laplace	PotenIal	

UL =
CS

CE

−qVS( ) + CG

CE

−qVG( ) + CD

CE

−qVD( ) where	 CE = CS +CG +CD

 

!
∇⋅ ε r

!
∇V( ) = 0

Δρ = 0



Charge	Transfer	&	Charging	PotenIal	
Total	Charge	

−qΔN = CSV +CG V −VG( ) +CD V −VD( )

U =UL +
q2

CE

ΔN

U =UL +U0 N − N0( )
U0 =

q2

CE

single	electron	charging	energy	

 

!
∇⋅ ε r

!
∇V( ) = −Δρ ε0

Δρ ≠ 0
U

where    -qV =U

UL =
CG

CE

−qVG( ) + CD

CE

−qVD( )



STRONG	CHARGING	REGIME	(U0	>>	kT)	



Coulomb	Blockade	Effect-I		

(Equilibrium)	

fu
ll	

em
pt
y	

Two	degenerate		(same	energy)	
empty	quantum	states			
(one	state	for	each	electron	spin	direcIon)	

(Gate	Voltage	Applied)	

fu
ll	

em
pt
y	

Two	degenerate		energy	levels		
are	pulled	down	with	gate	bias	

TIME	ARROW	 Next	Slide!!	



fu
ll	

em
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y	

(Gate	Voltage	Applied)	

fu
ll	

U0 =
q2

CE

(Gate	Voltage	Applied)	

First	electron	jumps	into	the		
energy	level	(let’s	say	spin-up	electron)	

Degeneracy	of	the	two	energy	levels	is	broken		
due	to	charging	potenIal	U0	(the	extra	electron).	

Coulomb	Blockade	Effect-II	

TIME	ARROW	 Next	Slide	



fu
ll	

U0 =
q2

CE

(Coulomb	Blockade	Effect)	

Coulomb	Blockade	Effect-III	
Next	electron	(spin	up	or	
down)	cannot	jump		
In	if	U0	is	too	large!!	

Next	energy	level	
is	too	high	for	contacts		
to	fill	in.	

(Bias	Voltage	Applied)	

fu
ll	

U0 =
q2

CE

If	drain	bias	is	applied		
the	electron	resIng	in	
the	channel	can		
jump	to	drain	contact.	

TIME	ARROW	 Next	Slide	



fu
ll	

(Degeneracy	Restored)	

Coulomb	Blockade	Effect-IV	

Once	the	extra	electron	leaves		
the	channel,	energy	level	
degeneracy	is	restored.		

fu
ll	

em
pt
y	

Single	Electron	Transistor!!!	

TIME	ARROW	 Next	Electron	Please!!	

Now	the	next	electron	can	jump	in	
from	the	source.		It	could	be	spin-up	
or	spin-down.	Process	repeats	one	
electron	at	a	Ime!!	



Equilibrium	

fu
ll	

em
pt
y	



fu
ll	

em
pt
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Applied	Gate	Voltage		



fu
ll	
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fu
ll	
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fu
ll	

U0 =
q2

CE



fu
ll	

U0 =
q2

CE



fu
ll	



WEAK	CHARGING	REGIME	(U0	<<	kT)	



CONSTANT	DENSITY	OF	STATES	

Current : 
 
I = qγ

2!
dE  D E( ) f1 E( )− f2 E( )⎡⎣ ⎤⎦∫ = qγ

2!
qVD( )

qΔV

G = q
2

h
πγ D( )

 
I = qγ D

2!
qΔV( )

 D E( ) = const



Electron-Electron	InteracIon	

electron-electron interaction U =UL +U0 N − N0( )



D(E)	

E	

Ec	

D(E)	

D(E-U)	

U	

Gate	Control	

 
I = qγ

2!
dE ⋅D(E −U )

−∞

∞

∫ f1(E)− f2 (E)[ ]



NUMBER	OF	ELECTRONS		
IN	THE	CHANNEL	



Number	of	Electrons	(Equilibrium)	

D(E)	

 

γ
!  

γ
!

N = dE ⋅n(E)
−∞

∞

∫ = 2 dE ⋅D(E) ⋅
−∞

∞

∫ f (E) This	is	for	equilibrium	and		
2	is	mulIplied	for	spin	



D(E)	

 

γ
!

 

γ
!

fchannel (E)

N = 2 dE ⋅D(E) ⋅
−∞

∞

∫
f1(E)+ f2 (E)

2
⎡
⎣⎢

⎤
⎦⎥

This	is	for	non-equilibrium	and	
here	we	assume	escape	rate	γ is	
same	for	both	sides.	

Number	of	Electrons	(Non-Equilibrium)	



Asymmetric	Device	

D(E)	

 

γ 1
!

 

γ 2
!

fchannel (E)

N = 2 dE ⋅D(E)
−∞

∞

∫
γ 1 f1(E)+ γ 2 f2 (E)

γ 1 + γ 2

⎡

⎣
⎢

⎤

⎦
⎥

This	is	for	non-equilibrium	and	
here	we	assume	escape	rate	γ is	
different	for	both	sides	(γ1	&	γ2	)	



ASSYMETRIC	COUPLING	
&	CURRENT	



Current	in	Asymmetric	Device	

D(E)	

 

γ 1
!

 

γ 2
!

I = q
h

dE ⋅D(E) γ 1γ 2
γ 1 + γ 2−∞

∞

∫ f1(E)− f2 (E)[ ]



Current	in	Asymmetric	Device	

	
D(E)	

 

γ 1
!

fchannel (E)

 
i1
in = qγ 1

!
dE ⋅D(E) ⋅ f1(E)  

i1
out = qγ 1

!
dE ⋅D(E) ⋅ fchannel (E)



Current	in	Asymmetric	Device	

	
D(E)	

fchannel (E)

 
i1 = i1

in − i1
out = qγ 1

!
dE ⋅D(E) ⋅ f1(E)− fchannel (E)[ ]

i1



Current	in	Asymmetric	Device	

	
D(E)	

fchannel (E)

 
i2 = i2

out − i2
in = qγ 2

!
dE ⋅D(E) ⋅ fchannel (E)− f2 (E)[ ]

i2



Charge	ConservaIon	

 
i2 = i2

out − i2
in = qγ 2

!
dE ⋅D(E) ⋅ fchannel (E)− f2 (E)[ ]

 
i1 = i1

in − i1
out = qγ 1

!
dE ⋅D(E) ⋅ f1(E)− fchannel (E)[ ]

γ 1 ⋅ f1(E)− fchannel (E)[ ] = γ 2 ⋅ fchannel (E)− f2 (E)[ ]

i1 = i2 Charge Conservation 

fchannel (E) =
γ 1 ⋅ f1(E)+ γ 2 ⋅ f2 (E)

γ 1 + γ 2
Weighted Average 



Channel	Fermi	Energy?	

fchannel (E) =
γ 1 ⋅ f1(E)+ γ 2 ⋅ f2 (E)

γ 1 + γ 2

Weighted Average 

fchannel (E) ≠
1

1+ exp E − µchannel( ) kBT⎡⎣ ⎤⎦

 there is no µchannel



Charge	ConservaIon	

 
ii =

qγ 1
!
dE ⋅D(E) ⋅ f1(E)−

γ 1 ⋅ f1(E)+ γ 2 ⋅ f2 (E)
γ 1 + γ 2

⎡

⎣
⎢

⎤

⎦
⎥

 
ii =

q
!
dE ⋅D(E) ⋅ γ 1γ 2

γ 1 + γ 2
⋅ f1(E)− f2 (E)[ ]

Energy Integral 

 
I = q
!

dE ⋅D(E)∫ ⋅ γ 1γ 2
γ 1 + γ 2

⋅ f1(E)− f2 (E)[ ]



SELF	CONSISTENT		
CURRENT	CALCULATION	



U =UL +U0 N − N0( )

N = dE ⋅D E −U( ) f1 E( ) + f2 E( )
2

⎡
⎣⎢

⎤
⎦⎥∫

 
I = q
!

dE ⋅D E −U( )γ
2

f1 E( )− f2 E( )⎡⎣ ⎤⎦∫
γ 1 = γ 2

U =UL +U0 N − N0( )

N = dE ⋅D E −U( ) γ 1 f1 E( ) + γ 2 f2 E( )
γ 1 + γ 2

⎡

⎣
⎢

⎤

⎦
⎥∫

 
I = q
!

dE ⋅D E −U( ) γ 1γ 2
γ 1 + γ 2

f1 E( )− f2 E( )⎡⎣ ⎤⎦∫

γ 1 ≠ γ 2

Charge	ConservaIon	



CURRENT	(U0	à	0)		

N = dE ⋅D(E −U ) ⋅ γ 1 ⋅ f1(E)+ γ 2 ⋅ f2 (E)
γ 1 + γ 2

⎡

⎣
⎢

⎤

⎦
⎥∫

 
I = q
!

dE ⋅D(E −U )∫ ⋅ γ 1γ 2
γ 1 + γ 2

⋅ f1(E)− f2 (E)[ ]

U =UL +U0 N − N0( ) (III )

(II )

(I )

If U0=0 => U=UL then these two  
equations  (II and III) are decoupled 

How to solve this? 



CURRENT	(U0	>	0)		

How to solve this? 

N = dE ⋅D(E −U ) ⋅ γ 1 ⋅ f1(E)+ γ 2 ⋅ f2 (E)
γ 1 + γ 2

⎡

⎣
⎢

⎤

⎦
⎥∫

 
I = q
!

dE ⋅D(E −U )∫ ⋅ γ 1γ 2
γ 1 + γ 2

⋅ f1(E)− f2 (E)[ ]

U =UL +U0 N − N0( ) (III )

(II )

(I )

i.  Assume an U (by guess), 
ii.  Find a N using equation (II) 
iii.  Find a new U using equation (III) 
iv.  Do step ii and iii until converge 
v.  Using equation (I) calculate current 



How to solve? 

N = dE ⋅n(E)∫ = dE ⋅D(E −U ) ⋅ γ 1 ⋅ f1(E)+ γ 2 ⋅ f2 (E)
γ 1 + γ 2

⎡

⎣
⎢

⎤

⎦
⎥∫

 
I = q
!

dE ⋅D(E −U )∫ ⋅ γ 1γ 2
γ 1 + γ 2

⋅ f1(E)− f2 (E)[ ]

U =UL +U0 N − N0( ) (III )

(II )

(I )

Self Consistent Solution (critical condition fraction of kT) 

Self	Consistent	SoluIon	



CURRENT	THROUGH	A	SINGLE	LEVEL	
REVISITED!!!	



dE

CURRENT	THROUGH	SINGLE	ENERGY	LEVEL	
Dε E( ) = γ 2π

E − ε( )2 + γ 2( )2     where   γ =γ 1 + γ 2

Current : 
 
I = q
!

dE ⋅Dε (E)∫ ⋅ γ 1γ 2
γ 1 + γ 2

⋅ f1(E)− f2 (E)[ ] = q
2

h



CURRENT	THROUGH	SINGLE	ENERGY	LEVEL	

Current : 

At low temperature: 


